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Abstract

An inverse analysis is presented for simultaneous estimation of the source term distribution and the boundary
emissivity for an absorbing, emitting, anisotropic scattering, and gray plane±parallel medium with opaque and
di�use bounding surfaces from the knowledge of the exit radiation intensities and temperature at boundary surfaces.

The inverse problem is formulated as an optimization problem that minimizes the errors between the exit radiation
intensities calculated and the experimental data. The conjugate gradient method and the two-dimensional network
searching method are used to solve the inverse problem. The e�ects of the measurement errors, anisotropic

scattering, single-scattering albedo, optical thickness, and boundary emissivity on the accuracy of the inverse
analysis are investigated. The results show that the source term and the boundary emissivity can be simultaneously
estimated accurately for exact and noisy data, and the estimation of boundary emissivity is more sensitive to the

measurement errors. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Radiative heat transfer is important in high tempera-

ture devices such as combustion chambers and fur-

naces. In direct radiation problems, the source term or

the temperature distribution of medium, the radiative

properties of medium, and the boundary conditions

are given, and the radiation intensities are to be deter-

mined. On the other hand, in inverse radiation

problems, either the radiative properties, or the source

term, or the boundary conditions are to be determined

from the knowledge of the measured data. The inverse

analysis of radiation in a participating medium has a

broad range of engineering applications, for example,

the remote sensing of the atmosphere, the determi-

nation of the radiative properties of medium, and the

prediction of temperature distribution in ¯ame, and so

on.

Inverse radiation problems that deal with the pre-

diction of the temperature distribution or source

term in a medium from radiation measurements

have been reported by many researchers. Yi et al.

[1], Li and Ozisik [2], Li [3±5], Sewert [6±8] and

Liu et al. [9,10] have reconstructed the temperature

pro®les or source terms in plane±parallel, spherical,

cylindrical, and rectangular media by inverse radi-

ation analysis from the data of the radiation inten-

sities exiting the boundaries. Most of the work

assumed that the bounding surface is transparent or
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the emissivity of the boundary surface is known.

On many occasions, however, the bounding surface
may be opaque and its emissivity is unknown. For

example, the boundary emissivities of the combus-
tion chamber change with the operating condition,

and hence, the unknown temperature pro®le or

source term needs to be estimated simultaneously
with the unknown emissivities of the boundary sur-

faces. Only a limited amount of work is available

on this topic. Li and Ozisik [11] used the spherical
harmonics method and the conjugate gradient

method to estimate the source term and re¯ectivity

of boundary surfaces in an absorbing, emitting, and
isotropic scattering plane±parallel media. Liu et al.

[12] used the discrete ordinates method and the con-
jugate gradient method to recover the source term

and the emissivities of bounding surfaces in an

absorbing, emitting, and non-scattering plane±paral-
lel media. Both of these two works omitted the

emission of boundary. In many engineering appli-

cations, the emission of boundary cannot be
omitted, and the inverse analysis will meet the mini-

mum problem of multimodal function.

The inverse radiation problem considered in this

paper is concerned with simultaneous estimation of the
source term distribution and the emissivities of bound-

ing surfaces for an absorbing, emitting, anisotropic
scattering, and gray one-dimensional semitransparent

slab with opaque and di�use bounding surfaces from
the knowledge of the exit radiation intensities at
boundary surfaces. In addition, the temperature of
bounding surfaces is assumed to be available and the

boundary emission cannot be omitted. The inverse
problem is formulated thereby as an optimization
problem and solved by using the mixed method of con-

jugate gradient method and two-dimensional network
searching method. Test cases will be presented to dis-
cuss the e�ects of the measurement errors, anisotropic

scattering, single-scattering albedo, optical thickness,
and boundary emissivity on the accuracy of the inverse
analysis.

2. Formulation

As illustrated in Fig. 1, we consider an absorbing,
emitting, anisotropic scattering, gray plane±parallel
medium of optical thickness tL, and one-dimensional

radiation. The bounding surfaces at t � 0, t � tL are
opaque and di�use. The equation of radiative transfer
can be written as [13±15]

Nomenclature

a � �a1, a2, . . ., aNÿ1�T
an expansion coe�cients of the source term
b coe�cient of interpolation polynomial

d direction of descent
G minimum value of objective function for

the given e0 and eL

g scattering asymmetric parameter
I radiation intensity
S source term

Sav averaged value of source term
T temperature
Y measured exit radiation intensities at the

surface, t � 0

Z measured exit radiation intensities at the
surface, t � tL

Greek symbols
a step size
b conjugate coe�cient

G objective function
g measurement error of exit radiation

intensity

d a small speci®ed positive number
e0 emissivity of bounding surface, t � 0
eL emissivity of bounding surface, t � tL

Z error of system parameter
z random variable
m direction cosine

s standard deviation
�s Stefan±Boltzmann constant
t optical thickness variable

tL optical thickness of the slab
o single-scattering albedo
rI sensitivity coe�cient vector

rG gradient of the objective function with
respect to a

Subscripts

estimated estimated value by inverse analysis
exact exact value
I optimum point of e0 in discrete searching

network
J optimum point of eL in discrete searching

network

m direction of discrete ordinates

Superscripts

k kth iteration
opt global optimum value
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with boundary conditions

I�0, m� � e0S�0� � 2�1ÿ e0 �
�0
ÿ1

I
ÿ
0, m 0

�
m 0 dm 0,m > 0 �3�

I�tL, m� � eLS�tL � � 2�1ÿ eL �
�1
0

I
ÿ
tL, m 0

�
m 0 dm 0, m < 0

�4�
where I�t, m� is the radiation intensity, S�t� is the
source term, T�t� is the temperature, �n is the refractive
index, �s is the Stefan±Boltzmann constant, o is the

single scattering albedo, t is the optical thickness vari-
able, m � cos y is the direction cosine, F�m 0, m� is the
scattering phase function, e0 and eL are the emissivities
at the boundaries of t � 0 and t � tL respectively.

For the inverse problem, the source term and the
boundary emissivities are regarded as unknown, but
other quantities in Eqs. (1)±(4) are known. In addition,

the measured exit radiation intensities on the bound-
aries and the temperature of boundaries are considered
available. In the inverse analysis, the source term and

the boundary emissivities are estimated simultaneously
by utilizing the measured exit radiation intensities.
The source term S�t� in the medium is represented

by an N-order polynomial in the optical thickness vari-
able t as

S�t� �
XN
n�0

antn �5�

Using the known temperature data T�0� and T�tL�
of the bounding surfaces, we can know the sources

S�0� and S�tL� at boundaries from Eq. (2), so the
source term given by Eq. (5) can be rewritten as [12]

S�t� � S�0� �
XNÿ1
n�1

antn � 1

tNL

 
S�tL � ÿ S�0� ÿ

XNÿ1
n�1

antnL

!
tN

�6�

where an is the coe�cient of the expansion. The coe�-
cients, a1, a2, . . ., aNÿ1, are the parameters to be esti-
mated in the inverse problem. Once the source term is
available, the temperature distribution can be deter-

mined from the de®nition given by Eq. (2).
The inverse radiation problem of estimating the

unknown source term and boundary emissivities can

be formulated as an optimization problem in which
the square deviation between the exact radiation inten-
sities calculated and the experiment measurements is

minimized. We wish to minimize the object function

G� a, e0, eL � �
X
mi<0

�
I
ÿ
0, mi; a, e0, eL

�ÿ Y�mi �
� 2

�
X
mi>0

�
I�tL, mi; a, e0, eL � ÿ Z�mi �

� 2 �7�

where m � cos y is the direction cosine; Y�mi � and Z�mi �
are the measured exit radiation intensities at the
boundary surfaces of t � 0 and t � tL, respectively;
I�0, mi; a, e0, eL� and I�tL, mi; a, e0, eL� are the estimated

exit radiation intensities at the boundary surfaces of
t � 0 and t � tL, respectively, for an estimated par-
ameters a��a1, a2, . . ., aNÿ1�T, e0 and eL:
The objective function G�a, e0, eL� is a multimodal

function of variables a, e0 and eL: The method com-
monly used to solve the minimum point of unimodal
function, such as the Newton method and the conju-

gate gradient method [16], cannot be used directly to
minimize the multimodal objective function. Till now
there is no general method to solve the global mini-

mum point of multimodal function. In the inverse
problem considered in this paper, we discovered that,
when the boundary emissivities are given, the object

function G�a, e0, eL� is unimodal function of a. Consid-
ering this fact, we use the mixed method of the conju-
gate gradient method and the two-dimensional
network searching method. In this method, the entire

searching range of e0 and eL is discretized into a series
of points �e0; i, eL; j �: These points form a two-dimen-
sional searching network of e0 and eL: In each discrete

point �e0; i, eL; j �, we use the conjugate gradient method
to ®nd the minimum value G�e0; i, ej; L� of G�a, e0; i,
ej; L� at this point. And then we ®nd the minimum

value of the sequences G�e0; i, ej; L� and its correspond-
ing values of e0 and eL: Finally, we construct an interp-
olation function and solve the global minimum point.Fig. 1. Schematic of the physical system and coordinates.
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3. Method of approach

3.1. Two-dimensional network searching method

The searching procedure consists of following basic

steps:

(a) Within the searching range of boundary emissiv-
ities, generate sequences with equal interval De as

0 � e0, 1 < e0, 2 < � � � < e0, i < � � � < e0, M � 1 �8a�

0 � eL, 1 < eL, 2 < � � � < eL, j < � � � < eL, M � 1 �8b�

and then ®nd the minimum value G�e0; i, eL; j � of
object function G�a, e0; i, eL; j � in the search point

�e0; i, eL; j � by the conjugate gradient method as

G�e0, i, eL, j � � min
a

G�a, e0, i, eL, j � �9�

(b) Find the minimum value G�e0; I, eL; J� from the
sequence of G�e0; i, eL; j � as

G�e0, I, eL, J � � min
i, j

G�e0, i, eL, j � �10�

(c) Based on the point �e0; I, eL; J, G�e0; I, eL; J�� and
its adjacent discrete points, construct an interp-
olation polynomial, and then ®nd the minimum
point �eopt

0 , eopt
L � of the polynomial. There are three

typical cases. In ®rst case, the point �e0; I, eL; J�
locates on the one of the four corners of the two-
dimensional searching space, i.e., I � 1 or I �M
and J � 1 or J �M, the minimum point for the

entire searching space of boundary emissivities is
�e0; I, eL; J), i.e.,

eopt
0 � e0, I and eopt

L � eL, J �11�

In the second case, the point �e0; I, eL; J� locates on

the boundaries of the two-dimensional searching
space. For example, I � 1, J6�1 and J6�M: In this
case, based on the three point �e0; 1, eL; Jÿ1, G�e0; 1,
eL; Jÿ1��, �e0; 1, eL; J, G�e0; 1, eL; J�� and �e0; 1, eL; J�1,
G�e0; 1, eL; J�1��, construct a two-order interpolation
polynomial as

G�e0, 1, eL � � b0 � b1eL � b2e 2L �12�

then ®nd the minimum point �eopt
0 , eopt

L � as

eopt
0 � e0, 1 and eopt

L � ÿ0:5b1=b2 �13�

In the third case, �e0; I, eL; J� is the inner point of

the two-dimensional searching space. We use the
point �e0; I, eL; J, G�e0; I, eL; J�� and its four adjacent
points to construct a elliptic paraboloid function as

G�e0, eL � � b0 � b1e0 � b2eL � b3e 20 � b4e 2L �14�

then ®nd the minimum point �eopt
0 , eopt

L � as

eopt
0 � ÿ0:5b1=b3 and eopt

L � ÿ0:5b2=b4 �15�
(d) Set e0 � eopt

0 and eL � eopt
L , ®nd the optimum

coe�cients aopt by the conjugate gradient method
from Eq. (7)

G
�

aopt, eopt
0 , eopt

L

�
� min

a
G
�

a, eopt
0 , eopt

0

�
�16�

3.2. Conjugate gradient method of minimization

The minimization of the objective function with

respect to the desired vector is the most important pro-
cedure in solving the minimum problem of unimodal
function. We use the conjugate gradient method to

determine the unknown source term when the bound-
ary emissivities are given. Iterations are built in the fol-
lowing manner [16]:

ak�1 � ak ÿ akdk �17�
where ak is the step size, dk is the direction vector of
descent given by

dk � rGT
ÿ
ak, e0, eL

�
� bkdkÿ1 �18�

and the conjugate coe�cient bk is determined from

bk � rG
ÿ
ak, e0, eL

�
rGT

ÿ
ak, e0, eL

�
rG

ÿ
akÿ1, e0, eL

�
rGT

ÿ
akÿ1, e0, eL

� with

b0 � 0

�19�

Here, the row vector de®ned by

rG �
�
@G
@a1

,
@G
@a2

, . . . ,
@G
@aNÿ1

�
�20�

is the gradient of the objective function. Its com-
ponents are de®ned as

@G
@an
� 2

X
mm<0

�
I
ÿ
0, mm; a, e0, eL

�ÿ Y�mm �
�

@ I
ÿ
0, mm; a, e0, eL

�
@an

� 2
X
mm>0

�
I�tL, mm; a, e0, eL �

ÿ Z�mm �
�@I�tL, mm; a, e0, eL �

@an
�21�

In principle, the step size of the kth iteration, ak, can
be determined by minimizing the function, G�akÿakdk,
e0, eL�, for the given ak and dk in the following man-
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ner:

@G
ÿ
ak ÿ akdk, e0, eL

�
@ak

� 0 �22�

Since G�akÿ akdk, e0, eL� is the implicit function of ak,
the exact step size is di�cult to be solved. As the ®rst
order approximation, we make the ®rst order Taylor
expansion of the objective function with respect to ak:
We have from Eq. (22),

ak �
(X

mm<0

�
I
ÿ
0, mm;a, e0, eL

�ÿ Y�mm �
�

�
h
rIÿ0, mm; a, e0, eL

�
dk
i

�
X
mm>0

�
I�tL, mm; a, e0, eL � ÿ Z�mm �

�
�
h
rI�tL, mm; a, e0, eL �dk

i)
=

(X
mm<0

h
rIÿ0, mm; a, e0, eL

�
dk
i 2

��
X
mm>0

h
rI�tL, mm; a, e0, eL �dk

i 2)
�23�

where the row vector, rI, denotes

rI �
�
@ I

@a1
,
@ I

@a2
, . . . ,

@I

@aNÿ1

�
:

3.3. Sensitivity problem

Di�erentiating Eqs. (1)±(4) with respect to an, the
equations of sensitivity coe�cients can be written as
follows:

m
@

@t

�
@I�t, m�
@an

�
� @ I�t, m�

@an

� �1ÿ o�
"
1ÿ

�
t
tL

�Nÿn
#
tn

� o
2

�1
ÿ1

@ I
ÿ
t, m 0

�
@an

F
ÿ
m 0, m

�
dm 0 �24�

with boundary conditions

@ I�0, m�
@an

� 2�1ÿ e0 �
�0
ÿ1

@I
ÿ
0, m 0

�
@an

m 0 dm 0, m > 0 �25�

@ I�tL, m�
@an

� 2�1ÿ eL �
�1
0

@ I
ÿ
tL, m 0

�
@an

m 0 dm 0, m < 0 �26�

for n = 1, 2, . . . , N ÿ 1.

If we take @I=@an for I�t, m�, Eqs. (24)±(26) are simi-
lar to Eqs. (1)±(4). So the solution procedure of @I=@an
is the same as that for the direct problem given by
Eqs. (1)±(4), It can be solved by discrete ordinates
method S8 [9,15], and will not be repeated here.

3.4. Stopping criterion

The following condition

jG
ÿ
ak, e0, eL

�
ÿ G

ÿ
akÿ1, e0, eL

�
j < d �27�

is used for terminating the iterative process of a, where

d is a small speci®ed positive number.

3.5. Computational algorithm for the searching of a

We note that the sensitivity coe�cient vector rI is
independent of vector a. The computational algorithm
for the searching of a can be summarized as follows:

Step 1. Pick an initial guess a0. Set k = 0.

Step 2. Solve the equations of sensitivity coe�cients
given by Eqs. (24)±(26), and compute the sensitivity
coe�cient vector rI:
Step 3. Solve the direct problem given by Eqs. (1)±
(4), and compute the exit radiative intensities I�0,
mm; a, e0, eL� and I�tL, mm; a, e0, eL�:
Step 4. Calculate the objective function G�ak, e0, eL�
given by Eq. (7). Terminate the iteration process if
the speci®ed stopping criterion is satis®ed. Other-

wise, go to Step 5.
Step 5. Compute the gradient of the objective func-
tion rG from Eq. (21).
Step 6. Knowing rG, compute the conjugate coe�-

cient bk from Eq. (19), then compute the direction
vector of descent, dk, from Eq. (18).
Step 7. Knowing DI, I�0, mm; a, e0, eL�, I�tL, mm; a,

e0, eL�, Y�mm� and Z�mm�, compute the step size ak

from Eq. (23).
Step 8. Knowing ak and dk, compute the new esti-

mated vector ak+1 from Eq. (17).
Step 9. Set k � k� 1, and go back to Step 3.

4. Results and discussion

To examine the e�ectiveness of the method pre-
sented in this paper, three di�erent test cases are con-

sidered. In the ®rst case, the e�ects of measurement
errors on the estimation of source term and boundary
emissivities are considered. In the second case, it is

assumed that the relating system parameters such as
single-scattering albedo, scattering asymmetry par-
ameter, wall emissivity, and the optical thickness of
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slab do not have errors. The e�ects of these system
parameters on the estimation are examined. In the

third case, considering that all of the relating system
parameters have more or less errors, we analyze the
combined e�ects of the errors of system parameters

and the measurement errors on the estimation of
source term and boundary emissivities. In all the three
cases, the searching space of bounding emissivity is dis-

cretized into uniform grids with spacing De:
To demonstrate the e�ects of measurement errors on

the predicted source term and boundary emissivities,

we consider the random errors. The simulated
measured exit radiation intensities with random errors
are obtained by adding normally distributed errors
into the exact exit radiation intensities on the bound-

aries as�
Y�mm �

�
measured

� �Y�mm ��exact
� sY, mz, mm < 0 �28�

�
Z�mm �

�
measured

� �Z�mm ��exact
� sZ, mz, mm > 0 �29�

Here, z is a normal distributed random variable with

zero mean and unit standard deviation. The standard
deviations of measured intensities, sY, m and sZ, m, for
a g% measurement error at 99% con®dence, are deter-
mined as

sY, m �
�
Y�mm �

�
exact
� g%

2:576
�30�

sZ, m �
�
Z�mm �

�
exact
� g%

2:576
�31�

where 2.576 arises from the fact that 99% of a nor-
mally distributed population is contained within
22.576 standard deviation of the mean [17].

For the sake of comparison, the root mean square
(RMS) error Erms of the estimation for the source term
are de®ned as

Erms �
�
1

tL

�tL

0

�
Sestimated�t� ÿ Sexact�t�

� 2
dtL

�1=2

�32�

and the averaged value Sav of source term is de®ned as

Sav � 1

tL

�tL

0

Sexact�t� dt �33�

The scattering phase function is assumed to be linear
anisotropic, given as

F
ÿ
m, m 0

� � 1� gmm 0 �34�

Here, g is the scattering asymmetry parameter.

4.1. Case 1

In this case, we ®rst consider two di�erent distri-
butions of source terms expressed as follows:

S1�t� � 20� 500tÿ 1500t 2 � 2000t3 ÿ 1000t4 �35�

S2�t� � 20� 1687:5tÿ 3375t 2 � 3000t3 ÿ 1000t4 �36�
The values of system parameters are tL � 1,

o � 0:5, and g � 0:5, respectively, and the exact emis-

sivities of bounding surfaces are e0, exact � 0:8 and
eL, exact � 0:8: The grid spacing of the searching net-
work boundary emissivity is De � 0:1: Under the con-
dition of no measurement errors, the estimated values

of the source terms S1�t� and S2�t� by inverse analysis
are shown in Figs. 2 and 3. With no measurement
errors, g � 0%, no observable di�erence could be

detected between the estimated and exact values of the
source term when the results are presented in graphical
form. The estimated boundary emissivities e0, estimated �
0:799 and eL, estimated � 0:799, are very close to their
exact values.
Finally, we use the simulated experimental data con-

taining random measurement errors of g � 1% and
g � 3% to estimate the boundary emissivities and the
source term S3�t� expressed as a polynomial of degree
4:

S3�t� � 15� 200t� 440t 2 ÿ 1280t3 � 640t4 �37�
The values of system parameters are tL � 1,

o � 0:3, and g � 0:5, respectively, and the exact emis-

sivities of bounding surfaces are e0, exact � 0:5 and
eL, exact � 0:5: Di�erent sets of random numbers are
used to repeat the inverse calculations. The results of

the 20 random samples are shown in Fig. 4. The errors
of the source term estimation are within 5% for the

Fig. 2. Estimation of the source term S1�t� with inverse analy-

sis using simulated measured exit radiation intensity data with

g � 0%:
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case of g � 1%, and 9% for the case of g � 3%: The
largest deviations of boundary emissivity estimation

are 19% for the case of g � 1%, and 43% for the case
of g � 3%, respectively. Clearly, increasing g from 1 to
3%, decreases the accuracy of the estimation. Even in

the case of g � 3%, the estimation of the source term
is good. However, the estimation of boundary emissiv-
ity is more sensitive to the measurement errors.

4.2. Case 2

We now separately examine the e�ects of single-scat-
tering albedo o, scattering asymmetry parameter g,
optical thickness tL of slab, and boundary emissivity
on the accuracy of the inverse estimation. The poly-

nomial S1�t� expressed by Eq. (35) is used as the
source term to be estimated. It is assumed that the
relating system parameters stated above have no

errors, and the exit radiation intensities and the bound-
ary temperature have no measurement errors.
The e�ects of single-scattering albedo on the esti-

mation of the source term and boundary emissities are
shown in Table 1. The values of system parameters are
tL � 1 and g = 0.5. The exact emissivities of bounding

surfaces are e0, exact � 0:85 and eL, exact � 0:85, and the
grid spacing of the searching network of boundary
emissivity is De � 0:1: As shown in Table 1, increasing
o from 0.0 to 0.9, the accuracy of the estimation

decreases. When the single-scattering albedo is less
than 0.9, the errors of estimation, Erms=Sav, are less
than 4%. The e�ects of single-scattering albedo on the

estimation are not signi®cant.
The e�ects of scattering asymmetry parameter on

the estimation are shown in Tables 2 and 3. The values

of system parameters are tL � 1 and o � 0:5: The
exact emissivities of bounding surfaces are e0, exact �

0:85 and eL, exact � 0:85: The grid spacing of the search-
ing network of boundary emissivity, De � 0:1 is used

in Table 2, and De � 0:05 in Table 3. As shown in
Tables 2 and 3, The e�ects of scattering asymmetry
parameter on the estimation are small, especially with

De � 0:05: Comparing the two tables, we can ®nd that
the grid spacing De has in¯uence on the estimation.
Decreasing De, the accuracy of the estimation will be

Fig. 4. The e�ects of the measurement errors of exit radiation

intensities on the inverse estimation for the case tL � 1,

o � 0:3, g � 0:5, and De � 0:1:

Fig. 3. Estimation of the source term S2�t� with inverse analy-

sis using simulated measured exit radiation intensity data with

g � 0%:
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improved. However, the computational time will be
increase signi®cantly with the decrease of De:
The e�ects of optical thickness on the estimation are

shown in Table 4. The values of system parameters are
o � 0:5 and g � 0:5: The exact emissivities of bound-
ing surfaces are e0, exact � 0:85 and eL, exact � 0:85: The
grid spacing of the searching network of boundary
emissivity, De � 0:1, is used. As shown in Table 4, the
optical thickness has in¯uence on the estimation of
source term and boundary emissivity. When the optical

thickness is less than 1.0, the errors of the estimation
increase with the decrease of the optical thickness. This
is because the signals of exit radiation intensities

measured on the boundaries are disturbed largely by
the emission of bounding surfaces. When the optical
thickness is larger than 20.0, the errors of the esti-

mation increase with the optical thickness. This is
because the radiation signals of inner layer of the slab
are attenuated largely by the layer adjacent to the

bounding surface when the signals reach the boundary.
However, when the optical thickness tL are within the

range from 1.0 to 20.0, the errors of the inverse esti-
mation are small.

The in¯uence of boundary emissivity on the inverse
estimation is shown in Table 5. The values of system
parameters are tL � 1:0, o � 0:3 and g = 0.5. The

grid spacing of the searching network of boundary
emissivity is De � 0:1: As shown in Table 5, the errors
of the inverse estimation are very small.

4.3. Case 3

In the practical processes of measurement and
inverse solution, the known system parameters may
have random errors more or less. In order to examine
the combined e�ects of the errors of system parameters

and the measurement errors on the inverse estimation,
we considered the source term S3�t� expressed by Eq.
(37), and assumed that all known system parameters

have normally distributed random errors. The random
samples are generated in the following manner

Table 1

The results of the inverse estimation with di�erent single-scat-

tering albedo o for the case tL � 1, g � 0:5, e0, exact � 0:85,
eL, exact � 0:85, and De � 0:1

o e0, estimated eL, estimated Erms Erms=Sav (%)

0.00 0.811 0.811 1.059 1.528

0.15 0.810 0.810 1.160 1.674

0.30 0.809 0.809 1.284 1.852

0.45 0.808 0.808 1.450 2.093

0.60 0.808 0.808 1.687 2.434

0.75 0.807 0.807 2.015 2.907

0.90 0.806 0.806 2.549 3.679

Table 2

The results of the inverse estimation with di�erent scattering

asymmetry parameter g for the case tL � 1, o � 0:5,
e0, exact � 0:85, eL, exact � 0:85, and De � 0:1

g e0, estimated eL, estimated Erms Erms=Sav (%)

ÿ1.00 0.816 0.816 1.267 1.828

ÿ0.75 0.814 0.814 1.320 1.904

ÿ0.50 0.813 0.813 1.380 1.992

ÿ0.25 0.811 0.811 1.413 2.040

0.00 0.810 0.810 1.455 2.099

0.25 0.809 0.809 1.490 2.150

0.50 0.808 0.808 1.523 2.198

0.75 0.807 0.807 1.557 2.246

1.00 0.806 0.806 1.579 2.279

Table 3

The results of the inverse estimation with di�erent scattering

asymmetry parameter g for the case tL � 1, o � 0:5,
e0, exact � 0:85, eL, exact � 0:85 and De � 0:05

g e0, estimated eL, estimated Erms Erms=Sav (%)

ÿ1.00 0.8498 0.8498 7.582� 10ÿ3 1.094� 10ÿ2

ÿ0.75 0.8498 0.8498 7.272� 10ÿ3 1.049� 10ÿ2

ÿ0.50 0.8498 0.8498 1.019� 10ÿ2 1.470� 10ÿ2

ÿ0.25 0.8488 0.8498 5.348� 10ÿ3 7.717� 10ÿ3

0.00 0.8498 0.8498 5.570� 10ÿ3 8.038� 10ÿ3

0.25 0.8497 0.8497 1.013� 10ÿ2 1.462� 10ÿ2

0.50 0.8497 0.8497 8.316� 10ÿ3 1.200� 10ÿ2

0.75 0.8497 0.8497 1.102� 10ÿ2 1.591� 10ÿ2

1.00 0.8497 0.8497 8.725� 10ÿ3 1.259� 10ÿ2

Table 4

The results of the inverse estimation with di�erent optical

thickness tL for the case o � 0:5, g = 0.5, e0, exact � 0:85,
eL, exact � 0:85, and De � 0:1

tL e0, estimated eL, estimated Erms Erms=Sav (%)

0.5 0.805 0.805 6.314 9.112

1.0 0.808 0.808 1.523 2.198

2.0 0.810 0.810 0.527 0.781

5.0 0.816 0.816 0.601 0.868

10.0 0.827 0.827 0.713 1.028

20.0 0.828 0.828 1.104 1.594

30.0 0.738 0.850 5.321 7.640

40.0 0.931 0.943 7.431 10.669
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�Yi � � �Yi �exact � sYi
z �38�

Here, �Yi � represent the optical thickness of slab, the
single-scattering albedo, the scattering asymmetry par-
ameter, and the measured data of the source S(0) and

S�tL� at boundaries, respectively; �Yi �exact are the corre-
sponding exact values of these parameters stated
above. The standard deviations of these parameters,

sYi
, is chosen as

sYi
� �Yi �exact � Z%

2:576
�39�

Fig 5 shows the results of the inverse estimation for

the 20 random samples. The errors of the source term
estimation are within 2% for the case of g � 1% and
Z � 1%, and 5% for the case of g � 1% and Z � 3%:
The largest deviations of boundary emissivity esti-
mation are 7% for the case of g � 1% and Z � 1%,
and 22% for the case of g � 1% and Z � 3%, respect-

ively. Clearly, increasing Z from 1% to 3%, the accu-
racy of the estimation decreases. Even in the case of
g � 1% and Z � 3%, the estimation of the source term
is good. Comparing with Fig. 4, we note that the

errors of the inverse estimation are mainly brought
about by measurement errors of the exit radiation
intensities. In order to improve the accuracy of the

estimation of source term and boundary emissivities,
the measurement errors of the exit radiation intensities
must be con®ned to an appropriate limit.

For all cases considered above, calculations are
started with an initial guess a = 0. The CPU time
required for each sample of estimation calculation var-

ied from 10 to 40 min on a personal computer with an
Intel Pentium III 450 MHz processor.

5. Conclusions

An inverse analysis is presented for simultaneous
estimation of the source term distribution and the
boundary emissivity for an absorbing, emiting, aniso-

tropic scattering, and gray plane±parallel medium with
opaque and di�use bounding surfaces from the knowl-
edge of the exit radiation intensities and temperature
at boundary surfaces. The inverse problem is formu-

lated as an optimization problem that minimizes the
errors between the exit radiation intensities calculated
and the experimental data. The conjugate gradient

method and the two-dimensional network searching
method are used to solve the inverse problem. The
e�ects of the measurement errors, anisotropic scatter-

ing, single-scattering albedo, optical thickness, and
boundary emissivity on the accuracy of the inverse
analysis are investigated. The results show that the
source term and the boundary emissivity can be simul-

taneously estimated accurately for exact and noisy
data, and the estimation of boundary emissivity is
more sensitive to the measurement errors. The accu-

racy of the inverse estimation is limited mainly by the
measurement errors of the exit radiation intensities on
the boundaries. In order to reduce the errors of the

inverse estimation, the measurement errors must be
con®ned to an appropriate limit. The algorithm can be
extended to non-gray media.

Table 5

The results of the inverse estimation with di�erent boundary emissitivies for the case tL � 1, o � 0:3, g = 0.5, De � 0:1

e0, exact eL, exact e0, estimated eL, estimated Erms Erms=Sav (%)

0.0 0.0 0.000 0.000 4.497� 10ÿ4 6.489� 10ÿ4

0.1 0.1 0.099 0.099 4.534� 10ÿ2 6.542� 10ÿ2

0.2 0.2 0.199 0.199 4.233� 10ÿ2 6.109� 10ÿ2

0.3 0.3 0.299 0.299 3.686� 10ÿ2 5.320� 10ÿ2

0.4 0.4 0.399 0.399 4.009� 10ÿ2 5.784� 10ÿ2

0.5 0.5 0.499 0.499 3.627� 10ÿ2 5.235� 10ÿ2

0.6 0.6 0.599 0.599 3.570� 10ÿ2 5.151� 10ÿ2

0.7 0.7 0.699 0.699 3.246� 10ÿ2 4.684� 10ÿ2

0.8 0.8 0.799 0.799 3.278� 10ÿ2 4.730� 10ÿ2

0.9 0.9 0.899 0.899 2.866� 10ÿ2 4.135� 10ÿ2

1.0 1.0 1.000 1.000 3.934� 10ÿ3 5.677� 10ÿ3

0.0 1.0 0.000 1.000 1.772� 10ÿ3 2.558� 10ÿ3

0.1 0.9 0.099 0.899 3.761� 10ÿ2 5.427� 10ÿ2

0.2 0.8 0.199 0.799 3.537� 10ÿ2 5.104� 10ÿ2

0.3 0.7 0.299 0.699 3.570� 10ÿ2 5.151� 10ÿ2

0.4 0.6 0.399 0.599 3.516� 10ÿ2 5.074� 10ÿ2
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